Chapter 15 Week12_1: Lavaan Lab 12 SEM for Missing Data

In this lab, we’ll use an example dataset HolzingerSwineford1939 in the package lavaan. Hence, lavaan must be installed.

Load up the lavaan library:

library(lavaan)

Use data() to load HolzingerSwineford1939:

data(HolzingerSwineford1939)
head(HolzingerSwineford1939,3)
##   id sex ageyr agemo  school grade       x1   x2    x3       x4   x5
## 1  1   1    13     1 Pasteur     7 3.333333 7.75 0.375 2.333333 5.75
## 2  2   2    13     7 Pasteur     7 5.333333 5.25 2.125 1.666667 3.00
## 3  3   2    13     1 Pasteur     7 4.500000 5.25 1.875 1.000000 1.75
##          x6       x7   x8       x9
## 1 1.2857143 3.391304 5.75 6.361111
## 2 1.2857143 3.782609 6.25 7.916667
## 3 0.4285714 3.260870 3.90 4.416667
tail(HolzingerSwineford1939,3)
##      id sex ageyr agemo      school grade       x1   x2    x3       x4
## 299 348   2    14     3 Grant-White     8 4.666667 5.50 1.875 3.666667
## 300 349   1    14     2 Grant-White     8 4.333333 6.75 0.500 3.666667
## 301 351   1    13     5 Grant-White    NA 4.333333 6.00 3.375 3.666667
##       x5       x6       x7   x8       x9
## 299 5.75 4.285714 4.000000 6.00 7.611111
## 300 4.50 2.000000 5.086957 6.20 4.388889
## 301 5.75 3.142857 4.086957 6.95 5.166667
?HolzingerSwineford1939
  • The classic Holzinger and Swineford (1939) dataset consists of mental ability test scores of seventh- and eighth-grade children from two different schools (Pasteur and Grant-White).
  • In the original dataset (available in the MBESS package), there are scores for 26 tests.
  • However, a smaller subset with 9 variables is more widely used in the literature (for example in Joreskog’s 1969 paper, which also uses the 145 subjects from the Grant-White school only).

15.1 PART I: Generate some missing data

HolzingerSwineford1939 has complete dataset on all nine indicators x1-x9. In this example, we will create some missingness in x5 and x9.

For a commented analysis, check vignettes of the R package lslx.

  • First, missingness on x5 depends on x1: lowest 20% of x1 miss x5 values
data_miss <- lavaan::HolzingerSwineford1939
data_miss$x5 <- ifelse(data_miss$x1 <= quantile(data_miss$x1, .2), 
                       NA, data_miss$x5)
  • Second, missingness on x9 depends on age: lowest 10% of age group miss x9 values
  • Note that age is created by ageyr and agemo. Since ageyr and agemo are not the variables that we are interested, the two variables are treated as auxiliary in the later analysis.
data_miss$age <- data_miss$ageyr + data_miss$agemo/12
data_miss$x9 <- ifelse(data_miss$age <= quantile(data_miss$age, .1), 
                       NA, data_miss$x9)
head(data_miss)
##   id sex ageyr agemo  school grade       x1   x2    x3       x4   x5
## 1  1   1    13     1 Pasteur     7 3.333333 7.75 0.375 2.333333   NA
## 2  2   2    13     7 Pasteur     7 5.333333 5.25 2.125 1.666667 3.00
## 3  3   2    13     1 Pasteur     7 4.500000 5.25 1.875 1.000000 1.75
## 4  4   1    13     2 Pasteur     7 5.333333 7.75 3.000 2.666667 4.50
## 5  5   2    12     2 Pasteur     7 4.833333 4.75 0.875 2.666667 4.00
## 6  6   2    14     1 Pasteur     7 5.333333 5.00 2.250 1.000000 3.00
##          x6       x7   x8       x9      age
## 1 1.2857143 3.391304 5.75 6.361111 13.08333
## 2 1.2857143 3.782609 6.25 7.916667 13.58333
## 3 0.4285714 3.260870 3.90 4.416667 13.08333
## 4 2.4285714 3.000000 5.30 4.861111 13.16667
## 5 2.5714286 3.695652 6.30       NA 12.16667
## 6 0.8571429 4.347826 6.65 7.500000 14.08333
  • use the function is.na() to return a matrix of missing data indicators (missing: true, complete: false)
na.eval = is.na(data_miss)
head(na.eval[,7:15], 3)
##         x1    x2    x3    x4    x5    x6    x7    x8    x9
## [1,] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  • missing counts for each column (variable)
colSums(na.eval)
##     id    sex  ageyr  agemo school  grade     x1     x2     x3     x4 
##      0      0      0      0      0      1      0      0      0      0 
##     x5     x6     x7     x8     x9    age 
##     65      0      0      0     33      0
  • 65 values are missing on x5
  • 33 values are missing on x9

MCAR, MAR, OR MNAR?

  • Ans: MAR for both x5 and x9
  • A small tip: if you want a complete version of the dataset, use function na.omit()
data.complete = na.omit(data_miss)
dim(data.complete) # [1] 208  16
## [1] 208  16

15.2 PART II: Visualization of missing data patterns (nice-to-have)

To visualize and handle missingness, we need mice package:

#install.packages('mice', dependencies=TRUE)
library("mice")

Display missing-data patterns:

md.pattern(data_miss)

##     id sex ageyr agemo school x1 x2 x3 x4 x6 x7 x8 age grade x9 x5   
## 208  1   1     1     1      1  1  1  1  1  1  1  1   1     1  1  1  0
## 59   1   1     1     1      1  1  1  1  1  1  1  1   1     1  1  0  1
## 27   1   1     1     1      1  1  1  1  1  1  1  1   1     1  0  1  1
## 6    1   1     1     1      1  1  1  1  1  1  1  1   1     1  0  0  2
## 1    1   1     1     1      1  1  1  1  1  1  1  1   1     0  1  1  1
##      0   0     0     0      0  0  0  0  0  0  0  0   0     1 33 65 99

Three variables with missing values on the right side: grade x9 x5:

  • five rows: five patterns:
  • 208 cases with complete responses (0 variable missing)
  • 59 cases with only x5 missing (1 variable missing)
  • 27 cases with only x9 missing (1 variable missing)
  • 6 cases with both x5 and x9 missing (2 variables missing)
  • 1 case with grade missing (1 variable missing)

15.3 PART III: Build a CFA model with missing data

Write out syntax for a three-factor CFA model:

HS.model <- ' visual  =~ x1 + x2 + x3
              textual =~ x4 + x5 + x6
              speed   =~ x7 + x8 + x9 '

Left untreated, the default in sem() is listwise deletion:

fit.listwise <- lavaan::sem(HS.model, 
                    data = data_miss, 
                    fixed.x = FALSE)

summary(fit.listwise, fit.measures = TRUE)
## lavaan 0.6-12 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##                                                   Used       Total
##   Number of observations                           209         301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                57.615
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               602.992
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.941
##   Tucker-Lewis Index (TLI)                       0.911
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2531.199
##   Loglikelihood unrestricted model (H1)      -2502.391
##                                                       
##   Akaike (AIC)                                5104.397
##   Bayesian (BIC)                              5174.586
##   Sample-size adjusted Bayesian (BIC)         5108.047
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.082
##   90 Percent confidence interval - lower         0.055
##   90 Percent confidence interval - upper         0.109
##   P-value RMSEA <= 0.05                          0.028
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.068
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.616    0.176    3.501    0.000
##     x3                0.728    0.188    3.870    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.170    0.081   14.521    0.000
##     x6                0.955    0.068   14.114    0.000
##   speed =~                                            
##     x7                1.000                           
##     x8                1.063    0.191    5.582    0.000
##     x9                0.853    0.153    5.586    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.308    0.065    4.700    0.000
##     speed             0.149    0.050    2.983    0.003
##   textual ~~                                          
##     speed             0.169    0.062    2.715    0.007
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.277    0.103    2.685    0.007
##    .x2                1.151    0.122    9.420    0.000
##    .x3                1.018    0.115    8.816    0.000
##    .x4                0.438    0.059    7.378    0.000
##    .x5                0.369    0.066    5.573    0.000
##    .x6                0.327    0.049    6.663    0.000
##    .x7                0.716    0.101    7.079    0.000
##    .x8                0.518    0.095    5.427    0.000
##    .x9                0.590    0.079    7.492    0.000
##     visual            0.448    0.119    3.759    0.000
##     textual           0.960    0.136    7.049    0.000
##     speed             0.441    0.115    3.831    0.000

15.4 PART IV: Addressing missing data

15.4.1 FIML

fit.fiml <- lavaan::sem(HS.model, 
                data = data_miss, 
                missing = 'fiml',
                fixed.x = FALSE)

summary(fit.fiml, fit.measures = TRUE)
## lavaan 0.6-12 ended normally after 52 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        30
## 
##   Number of observations                           301
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                                       
##   Test statistic                                71.947
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               842.783
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.941
##   Tucker-Lewis Index (TLI)                       0.911
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3609.653
##   Loglikelihood unrestricted model (H1)      -3573.679
##                                                       
##   Akaike (AIC)                                7279.306
##   Bayesian (BIC)                              7390.519
##   Sample-size adjusted Bayesian (BIC)         7295.376
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.081
##   90 Percent confidence interval - lower         0.060
##   90 Percent confidence interval - upper         0.103
##   P-value RMSEA <= 0.05                          0.009
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.060
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.549    0.110    5.001    0.000
##     x3                0.720    0.117    6.166    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.146    0.071   16.114    0.000
##     x6                0.949    0.058   16.259    0.000
##   speed =~                                            
##     x7                1.000                           
##     x8                1.175    0.154    7.632    0.000
##     x9                0.982    0.160    6.143    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.420    0.080    5.256    0.000
##     speed             0.248    0.056    4.416    0.000
##   textual ~~                                          
##     speed             0.161    0.050    3.201    0.001
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                4.936    0.067   73.473    0.000
##    .x2                6.088    0.068   89.855    0.000
##    .x3                2.250    0.065   34.579    0.000
##    .x4                3.061    0.067   45.694    0.000
##    .x5                4.316    0.078   55.567    0.000
##    .x6                2.186    0.063   34.667    0.000
##    .x7                4.186    0.063   66.766    0.000
##    .x8                5.527    0.058   94.854    0.000
##    .x9                5.381    0.061   88.408    0.000
##     visual            0.000                           
##     textual           0.000                           
##     speed             0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .x1                0.540    0.121    4.458    0.000
##    .x2                1.135    0.105   10.845    0.000
##    .x3                0.851    0.095    8.948    0.000
##    .x4                0.397    0.050    8.015    0.000
##    .x5                0.378    0.060    6.301    0.000
##    .x6                0.337    0.044    7.696    0.000
##    .x7                0.773    0.083    9.363    0.000
##    .x8                0.455    0.086    5.278    0.000
##    .x9                0.624    0.085    7.358    0.000
##     visual            0.819    0.152    5.391    0.000
##     textual           0.953    0.112    8.533    0.000
##     speed             0.410    0.090    4.539    0.000

15.4.2 Multiple Imputation

To perform MI with lavaan, we turn to the R-package semTools which offers many functions that extends the basic sem() function.

#install.packages('semTools', dependencies=TRUE)
library("semTools")

Mice also utilizes information from auxiliary variables. Since we don’t know which ones are auxiliary variables, let’s include sex, age and grade and generate imputed datasets.

Again, MI consists of three steps:

    1. Imputation Step
    1. Analysis Step
    1. Pooling Step
out1 <- cfa.mi(HS.model, 
               data=data_miss[,c("x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "sex", "age", "grade")],
               fixed.x = FALSE, 
               m = 20, 
               miPackage="mice",
               seed = 12345)

summary(out1)
## lavaan.mi object based on 20 imputed data sets. 
## See class?lavaan.mi help page for available methods. 
## 
## Convergence information:
## The model converged on 20 imputed data sets 
## 
## Rubin's (1987) rules were used to pool point and SE estimates across 20 imputed data sets, and to calculate degrees of freedom for each parameter's t test and CI.
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  t-value       df  P(>|t|)
##   visual =~                                                    
##     x1                1.000                                    
##     x2                0.551    0.104    5.313      Inf    0.000
##     x3                0.722    0.114    6.354      Inf    0.000
##   textual =~                                                   
##     x4                1.000                                    
##     x5                1.148    0.068   16.758  309.417    0.000
##     x6                0.946    0.058   16.333 1421.833    0.000
##   speed =~                                                     
##     x7                1.000                                    
##     x8                1.171    0.173    6.779      Inf    0.000
##     x9                0.996    0.147    6.778  941.261    0.000
## 
## Covariances:
##                    Estimate  Std.Err  t-value       df  P(>|t|)
##   visual ~~                                                    
##     textual           0.408    0.076    5.377 6795.170    0.000
##     speed             0.254    0.059    4.304      Inf    0.000
##   textual ~~                                                   
##     speed             0.165    0.051    3.219      Inf    0.001
## 
## Variances:
##                    Estimate  Std.Err  t-value       df  P(>|t|)
##    .x1                0.542    0.120    4.518      Inf    0.000
##    .x2                1.134    0.106   10.720      Inf    0.000
##    .x3                0.849    0.095    8.979      Inf    0.000
##    .x4                0.392    0.049    7.992  724.963    0.000
##    .x5                0.400    0.058    6.889  286.554    0.000
##    .x6                0.338    0.043    7.837  677.723    0.000
##    .x7                0.780    0.085    9.128      Inf    0.000
##    .x8                0.469    0.080    5.841 9887.286    0.000
##    .x9                0.616    0.074    8.344  850.258    0.000
##     visual            0.816    0.153    5.332      Inf    0.000
##     textual           0.959    0.115    8.318      Inf    0.000
##     speed             0.403    0.093    4.343      Inf    0.000