Chapter 22 Lavaan Lab 19: Multilevel SEM
In this lab, we will:
- build a multilevel CFA model
- add covariates at both the between and the within level
Load up the lavaan library:
library(lavaan)
Let’s read in a Mplus example dataset from an online location
<- read.table("http://statmodel.com/usersguide/chap9/ex9.6.dat")
Data names(Data) <- c("y1", "y2", "y3", "y4", "x1", "x2", "w", "clus")
Take a look at the matrix:
head(Data)
## y1 y2 y3 y4 x1 x2 w clus
## 1 2.203250 1.858861 1.738477 2.244863 1.142800 -0.796987 -0.149501 1
## 2 1.934917 2.127876 0.083120 2.509436 1.949033 -0.122764 -0.149501 1
## 3 0.321955 0.977231 -0.835405 0.558367 -0.716481 -0.767064 -0.149501 1
## 4 0.073154 -1.743092 -2.310271 -1.514332 -2.649131 0.637570 -0.149501 1
## 5 -1.214906 0.452618 0.372610 -1.790372 -0.262916 0.302564 -0.149501 1
## 6 0.298330 -1.820272 0.561335 -2.090582 -0.944963 1.363045 0.319335 2
dim(Data)
## [1] 1000 8
length(unique(Data$clus))
## [1] 110
- there are 1000 individual observations in 110 clusters
- cluster sizes: 5, 10, 15
- 4 measures at the within level y1, y2, y3, y4
- 2 covariates at the within level: x1, x2
- 1 covariate at the between level: w
22.1 PART I: Multilevel CFA 1: within-only construct
This model specifies the latent variable only at the within level:
<- '
model1 level: 1
fw =~ y1 + y2 + y3 + y4
level: 2
y1 ~~ y1 + y2 + y3 + y4
y2 ~~ y2 + y2 + y3
y3 ~~ y3 + y4
y4 ~~ y4
# all variances and covariances are freely estimated
'
Fit the model:
<- lavaan::sem(model1, data = Data,
model1fit cluster = "clus",
estimator = 'MLR',
fixed.x = FALSE)
::summary(model1fit, fit.measures = T, standardized = T) lavaan
## lavaan 0.6-12 ended normally after 57 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 1000
## Number of clusters [clus] 110
##
## Model Test User Model:
## Standard Robust
## Test Statistic 52.360 64.738
## Degrees of freedom 3 3
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 0.809
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 2619.397 2815.244
## Degrees of freedom 12 12
## P-value 0.000 0.000
## Scaling correction factor 0.930
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.981 0.978
## Tucker-Lewis Index (TLI) 0.924 0.912
##
## Robust Comparative Fit Index (CFI) 0.981
## Robust Tucker-Lewis Index (TLI) 0.923
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -6900.518 -6900.518
## Scaling correction factor 1.050
## for the MLR correction
## Loglikelihood unrestricted model (H1) -6874.338 -6874.338
## Scaling correction factor 1.020
## for the MLR correction
##
## Akaike (AIC) 13843.036 13843.036
## Bayesian (BIC) 13946.099 13946.099
## Sample-size adjusted Bayesian (BIC) 13879.402 13879.402
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.128 0.143
## 90 Percent confidence interval - lower 0.099 0.111
## 90 Percent confidence interval - upper 0.160 0.178
## P-value RMSEA <= 0.05 0.000 0.000
##
## Robust RMSEA 0.129
## 90 Percent confidence interval - lower 0.103
## 90 Percent confidence interval - upper 0.157
##
## Standardized Root Mean Square Residual (corr metric):
##
## SRMR (within covariance matrix) 0.022 0.022
## SRMR (between covariance matrix) 0.334 0.334
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
##
## Level 1 [within]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw =~
## y1 1.000 1.568 0.843
## y2 1.019 0.035 28.881 0.000 1.598 0.857
## y3 0.995 0.041 24.267 0.000 1.560 0.832
## y4 1.034 0.035 29.613 0.000 1.622 0.851
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.000 0.000 0.000
## .y2 0.000 0.000 0.000
## .y3 0.000 0.000 0.000
## .y4 0.000 0.000 0.000
## fw 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.997 0.070 14.220 0.000 0.997 0.289
## .y2 0.919 0.061 14.990 0.000 0.919 0.265
## .y3 1.082 0.057 18.977 0.000 1.082 0.308
## .y4 0.997 0.069 14.422 0.000 0.997 0.275
## fw 2.458 0.186 13.209 0.000 1.000 1.000
##
##
## Level 2 [clus]:
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 ~~
## .y2 0.069 0.027 2.558 0.011 0.069 0.935
## .y3 0.080 0.027 2.916 0.004 0.080 1.141
## .y4 0.052 0.024 2.157 0.031 0.052 0.764
## .y2 ~~
## .y3 0.055 0.023 2.399 0.016 0.055 0.935
## .y3 ~~
## .y4 0.040 0.026 1.537 0.124 0.040 0.727
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.063 0.089 -0.716 0.474 -0.063 -0.215
## .y2 -0.060 0.088 -0.674 0.500 -0.060 -0.239
## .y3 -0.026 0.086 -0.301 0.763 -0.026 -0.109
## .y4 -0.005 0.089 -0.053 0.958 -0.005 -0.020
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.088 0.033 2.679 0.007 0.088 1.000
## .y2 0.062 0.037 1.687 0.092 0.062 1.000
## .y3 0.056 0.035 1.608 0.108 0.056 1.000
## .y4 0.054 0.038 1.423 0.155 0.054 1.000
22.2 PART II: Multilevel CFA 2: Between-only construct
- Example: construct reflects self-reported ‘school climate’ measured by a questionnaire filled in by the school principles
- We will only have one response for each school
- We may collect other variables from students/teachers in the schools though
Note that the following model syntax:
<- '
model2.wrong level: 1
# perhaps other level-1 variables
level: 2
fb =~ y1 + y2 + y3 + y4
'
<- lavaan::sem(model2.wrong, data = Data,
model2fit cluster = "clus",
estimator = 'MLR',
fixed.x = FALSE)
in lav_partable_vnames(tmp.lav, type = "ov", level = tmp.level.values[l]) : lavaan ERROR: level column does not contain value `1' Error
won’t work because there is nothing at level 1. Instead, specify this model just like a regular CFA model:
<- '
model2 fb =~ y1 + y2 + y3 + y4
'
Fit the model:
<- lavaan::sem(model2, data = Data,
model2fit cluster = "clus",
estimator = 'MLR',
fixed.x = FALSE)
::summary(model2fit, fit.measures = T, standardized = T) lavaan
## lavaan 0.6-12 ended normally after 20 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 12
##
## Number of observations 1000
## Number of clusters [clus] 110
##
## Model Test User Model:
## Standard Robust
## Test Statistic 0.108 0.107
## Degrees of freedom 2 2
## P-value (Chi-square) 0.947 0.948
## Scaling correction factor 1.013
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 2729.902 5889.388
## Degrees of freedom 6 6
## P-value 0.000 0.000
## Scaling correction factor 0.464
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000 1.000
## Tucker-Lewis Index (TLI) 1.002 1.001
##
## Robust Comparative Fit Index (CFI) 1.000
## Robust Tucker-Lewis Index (TLI) 1.002
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -6907.183 -6907.183
## Scaling correction factor 1.205
## for the MLR correction
## Loglikelihood unrestricted model (H1) -6907.129 -6907.129
## Scaling correction factor 1.178
## for the MLR correction
##
## Akaike (AIC) 13838.367 13838.367
## Bayesian (BIC) 13897.260 13897.260
## Sample-size adjusted Bayesian (BIC) 13859.147 13859.147
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000 0.000
## 90 Percent confidence interval - lower 0.000 0.000
## 90 Percent confidence interval - upper 0.007 0.003
## P-value RMSEA <= 0.05 0.995 0.996
##
## Robust RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.006
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.001 0.001
##
## Parameter Estimates:
##
## Standard errors Robust.cluster
## Information Observed
## Observed information based on Hessian
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb =~
## y1 1.000 1.638 0.856
## y2 0.995 0.031 31.694 0.000 1.629 0.860
## y3 0.984 0.037 26.944 0.000 1.612 0.842
## y4 1.003 0.029 34.582 0.000 1.643 0.851
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.064 0.090 -0.707 0.479 -0.064 -0.033
## .y2 -0.058 0.089 -0.652 0.515 -0.058 -0.031
## .y3 -0.026 0.087 -0.303 0.762 -0.026 -0.014
## .y4 -0.011 0.091 -0.119 0.905 -0.011 -0.006
## fb 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.983 0.065 15.151 0.000 0.983 0.268
## .y2 0.937 0.060 15.657 0.000 0.937 0.261
## .y3 1.065 0.058 18.477 0.000 1.065 0.291
## .y4 1.030 0.064 16.008 0.000 1.030 0.276
## fb 2.684 0.178 15.101 0.000 1.000 1.000
22.4 PART IV: Multilevel CFA 4: Configural construct
- Model 4a specifies the latent variable both at the within and the between level;
- The CFA at each level should have the same factor structure, but not necessarily the same parameter estimates;
<- '
model4a level: 1
fw =~ y1 + y2 + y3 + y4
level: 2
fb =~ y1 + y2 + y3 + y4
'
<- lavaan::sem(model4a, data = Data,
model4afit cluster = "clus",
estimator = 'MLR',
fixed.x = FALSE)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov variances are negative
::summary(model4afit, fit.measures = T, standardized = T) lavaan
## lavaan 0.6-12 ended normally after 50 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 20
##
## Number of observations 1000
## Number of clusters [clus] 110
##
## Model Test User Model:
## Standard Robust
## Test Statistic 0.000 0.000
## Degrees of freedom 4 4
## P-value (Chi-square) 1.000 1.000
## Scaling correction factor 0.977
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 2619.397 2815.244
## Degrees of freedom 12 12
## P-value 0.000 0.000
## Scaling correction factor 0.930
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000 1.000
## Tucker-Lewis Index (TLI) 1.005 1.004
##
## Robust Comparative Fit Index (CFI) 1.000
## Robust Tucker-Lewis Index (TLI) 1.004
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -6874.157 -6874.157
## Scaling correction factor 1.028
## for the MLR correction
## Loglikelihood unrestricted model (H1) -6874.338 -6874.338
## Scaling correction factor 1.020
## for the MLR correction
##
## Akaike (AIC) 13788.314 13788.314
## Bayesian (BIC) 13886.469 13886.469
## Sample-size adjusted Bayesian (BIC) 13822.948 13822.948
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000 0.000
## 90 Percent confidence interval - lower 0.000 0.000
## 90 Percent confidence interval - upper 0.000 0.000
## P-value RMSEA <= 0.05 1.000 1.000
##
## Robust RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
##
## Standardized Root Mean Square Residual (corr metric):
##
## SRMR (within covariance matrix) 0.001 0.001
## SRMR (between covariance matrix) 0.003 0.003
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
##
## Level 1 [within]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw =~
## y1 1.000 1.486 0.831
## y2 0.992 0.035 28.208 0.000 1.474 0.836
## y3 0.992 0.041 24.110 0.000 1.474 0.818
## y4 1.007 0.035 28.619 0.000 1.496 0.830
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.000 0.000 0.000
## .y2 0.000 0.000 0.000
## .y3 0.000 0.000 0.000
## .y4 0.000 0.000 0.000
## fw 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.989 0.071 13.980 0.000 0.989 0.309
## .y2 0.934 0.062 15.187 0.000 0.934 0.301
## .y3 1.076 0.057 18.812 0.000 1.076 0.331
## .y4 1.014 0.070 14.478 0.000 1.014 0.312
## fw 2.207 0.165 13.371 0.000 1.000 1.000
##
##
## Level 2 [clus]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb =~
## y1 1.000 0.700 1.006
## y2 1.005 0.086 11.732 0.000 0.704 0.998
## y3 0.947 0.094 10.117 0.000 0.663 1.013
## y4 0.984 0.080 12.240 0.000 0.689 0.983
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.072 0.089 -0.815 0.415 -0.072 -0.104
## .y2 -0.067 0.088 -0.755 0.450 -0.067 -0.095
## .y3 -0.035 0.086 -0.404 0.687 -0.035 -0.053
## .y4 -0.018 0.089 -0.205 0.838 -0.018 -0.026
## fb 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.006 0.018 -0.339 0.734 -0.006 -0.012
## .y2 0.002 0.020 0.091 0.928 0.002 0.004
## .y3 -0.011 0.020 -0.541 0.589 -0.011 -0.025
## .y4 0.016 0.021 0.786 0.432 0.016 0.033
## fb 0.490 0.120 4.099 0.000 1.000 1.000
- Model 4b specifies the same CFA at each level and requires the same factor loadings;
<- '
model4b level: 1
fw =~ a*y1 + b*y2 + c*y3 + d*y4
level: 2
fb =~ a*y1 + b*y2 + c*y3 + d*y4
'
<- lavaan::sem(model4b, data = Data,
model4bfit cluster = "clus",
estimator = 'MLR',
fixed.x = FALSE)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov variances are negative
::summary(model4bfit, fit.measures = T, standardized = T) lavaan
## lavaan 0.6-12 ended normally after 44 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 20
## Number of equality constraints 3
##
## Number of observations 1000
## Number of clusters [clus] 110
##
## Model Test User Model:
## Standard Robust
## Test Statistic 0.057 0.059
## Degrees of freedom 7 7
## P-value (Chi-square) 1.000 1.000
## Scaling correction factor 0.967
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 2619.397 2815.244
## Degrees of freedom 12 12
## P-value 0.000 0.000
## Scaling correction factor 0.930
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000 1.000
## Tucker-Lewis Index (TLI) 1.005 1.004
##
## Robust Comparative Fit Index (CFI) 1.000
## Robust Tucker-Lewis Index (TLI) 1.004
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -6874.367 -6874.367
## Scaling correction factor 0.885
## for the MLR correction
## Loglikelihood unrestricted model (H1) -6874.338 -6874.338
## Scaling correction factor 1.020
## for the MLR correction
##
## Akaike (AIC) 13782.733 13782.733
## Bayesian (BIC) 13866.165 13866.165
## Sample-size adjusted Bayesian (BIC) 13812.172 13812.172
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000 0.000
## 90 Percent confidence interval - lower 0.000 0.000
## 90 Percent confidence interval - upper 0.000 0.000
## P-value RMSEA <= 0.05 1.000 1.000
##
## Robust RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
##
## Standardized Root Mean Square Residual (corr metric):
##
## SRMR (within covariance matrix) 0.002 0.002
## SRMR (between covariance matrix) 0.003 0.003
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
##
## Level 1 [within]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw =~
## y1 (a) 1.000 1.489 0.832
## y2 (b) 0.995 0.031 31.649 0.000 1.482 0.838
## y3 (c) 0.983 0.036 27.090 0.000 1.463 0.815
## y4 (d) 1.003 0.029 34.668 0.000 1.494 0.829
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.000 0.000 0.000
## .y2 0.000 0.000 0.000
## .y3 0.000 0.000 0.000
## .y4 0.000 0.000 0.000
## fw 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.987 0.069 14.228 0.000 0.987 0.308
## .y2 0.930 0.061 15.173 0.000 0.930 0.298
## .y3 1.081 0.057 18.905 0.000 1.081 0.335
## .y4 1.015 0.068 14.877 0.000 1.015 0.313
## fw 2.218 0.158 14.021 0.000 1.000 1.000
##
##
## Level 2 [clus]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb =~
## y1 (a) 1.000 0.693 1.005
## y2 (b) 0.995 0.031 31.649 0.000 0.690 0.997
## y3 (c) 0.983 0.036 27.090 0.000 0.681 1.013
## y4 (d) 1.003 0.029 34.668 0.000 0.695 0.984
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.071 0.089 -0.804 0.421 -0.071 -0.103
## .y2 -0.066 0.088 -0.746 0.456 -0.066 -0.095
## .y3 -0.034 0.086 -0.396 0.692 -0.034 -0.051
## .y4 -0.017 0.089 -0.196 0.845 -0.017 -0.025
## fb 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.005 0.016 -0.302 0.763 -0.005 -0.010
## .y2 0.003 0.019 0.170 0.865 0.003 0.007
## .y3 -0.012 0.020 -0.601 0.548 -0.012 -0.027
## .y4 0.016 0.020 0.767 0.443 0.016 0.031
## fb 0.480 0.119 4.027 0.000 1.000 1.000
22.6 PART VI: Model Comparison
= fitMeasures(model1fit, fit.measures = c("chisq.scaled", "df.scaled", "pvalue.scaled", "rmsea.robust", "rmsea.ci.lower.robust", "rmsea.ci.upper.robust", "cfi.robust", "tli.robust", "srmr_within", "srmr_between"))
m1 = fitMeasures(model2fit, fit.measures = c("chisq.scaled", "df.scaled", "pvalue.scaled", "rmsea.robust", "rmsea.ci.lower.robust", "rmsea.ci.upper.robust", "cfi.robust", "tli.robust", "srmr_within", "srmr_between"))
m2 = fitMeasures(model3fit, fit.measures = c("chisq.scaled", "df.scaled", "pvalue.scaled", "rmsea.robust", "rmsea.ci.lower.robust", "rmsea.ci.upper.robust", "cfi.robust", "tli.robust", "srmr_within", "srmr_between"))
m3 = fitMeasures(model4afit, fit.measures = c("chisq.scaled", "df.scaled", "pvalue.scaled", "rmsea.robust", "rmsea.ci.lower.robust", "rmsea.ci.upper.robust", "cfi.robust", "tli.robust", "srmr_within", "srmr_between"))
m4a = fitMeasures(model4bfit, fit.measures = c("chisq.scaled", "df.scaled", "pvalue.scaled", "rmsea.robust", "rmsea.ci.lower.robust", "rmsea.ci.upper.robust", "cfi.robust", "tli.robust", "srmr_within", "srmr_between"))
m4b = fitMeasures(model5fit, fit.measures = c("chisq.scaled", "df.scaled", "pvalue.scaled", "rmsea.robust", "rmsea.ci.lower.robust", "rmsea.ci.upper.robust", "cfi.robust", "tli.robust", "srmr_within", "srmr_between")) m5
#install.packages('qpcR')
library(qpcR)
round(qpcR:::cbind.na(m1, m2, m3, m4a, m4b, m5), 3)
## m1 m2 m3 m4a m4b m5
## chisq.scaled 64.738 0.107 342.869 0.000 0.059 0.000
## df.scaled 3.000 2.000 3.000 4.000 7.000 3.000
## pvalue.scaled 0.000 0.948 0.000 1.000 1.000 1.000
## rmsea.robust 0.129 0.000 0.456 0.000 0.000 0.000
## rmsea.ci.lower.robust 0.103 0.000 0.416 0.000 0.000 0.000
## rmsea.ci.upper.robust 0.157 0.006 0.498 0.000 0.000 0.000
## cfi.robust 0.981 1.000 0.760 1.000 1.000 1.000
## tli.robust 0.923 1.002 0.042 1.004 1.004 1.004
## srmr_within 0.022 NA 0.266 0.001 0.002 0.001
## srmr_between 0.334 NA 0.010 0.003 0.003 0.003
The final model goes to (drumroll)…model4b!
22.7 PART VII: Adding Covariates to Multilevel SEM
22.7.1 Model A: Adding a within-only covariate
<- '
model4wCovA level: 1
fw =~ a*y1 + b*y2 + c*y3 + d*y4
fw ~ x1
level: 2
fb =~ a*y1 + b*y2 + c*y3 + d*y4
'
<- lavaan::sem(model4wCovA, data = Data,
model4wCovAfit cluster = "clus",
estimator = 'MLR',
fixed.x = FALSE)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov variances are negative
::summary(model4wCovAfit, fit.measures = T, standardized = T) lavaan
## lavaan 0.6-12 ended normally after 54 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 23
## Number of equality constraints 3
##
## Number of observations 1000
## Number of clusters [clus] 110
##
## Model Test User Model:
## Standard Robust
## Test Statistic 1.793 1.874
## Degrees of freedom 10 10
## P-value (Chi-square) 0.998 0.997
## Scaling correction factor 0.957
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 3085.335 3318.855
## Degrees of freedom 16 16
## P-value 0.000 0.000
## Scaling correction factor 0.930
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000 1.000
## Tucker-Lewis Index (TLI) 1.004 1.004
##
## Robust Comparative Fit Index (CFI) 1.000
## Robust Tucker-Lewis Index (TLI) 1.004
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -8053.772 -8053.772
## Scaling correction factor 0.901
## for the MLR correction
## Loglikelihood unrestricted model (H1) -8052.875 -8052.875
## Scaling correction factor 1.009
## for the MLR correction
##
## Akaike (AIC) 16147.544 16147.544
## Bayesian (BIC) 16245.699 16245.699
## Sample-size adjusted Bayesian (BIC) 16182.178 16182.178
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000 0.000
## 90 Percent confidence interval - lower 0.000 0.000
## 90 Percent confidence interval - upper 0.000 0.000
## P-value RMSEA <= 0.05 1.000 1.000
##
## Robust RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
##
## Standardized Root Mean Square Residual (corr metric):
##
## SRMR (within covariance matrix) 0.004 0.004
## SRMR (between covariance matrix) 0.004 0.004
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
##
## Level 1 [within]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw =~
## y1 (a) 1.000 1.501 0.834
## y2 (b) 0.994 0.031 32.270 0.000 1.491 0.838
## y3 (c) 0.984 0.036 27.550 0.000 1.476 0.818
## y4 (d) 1.006 0.029 34.896 0.000 1.510 0.834
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw ~
## x1 1.002 0.050 20.044 0.000 0.667 0.663
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.000 0.000 0.000
## .y2 0.000 0.000 0.000
## .y3 0.000 0.000 0.000
## .y4 0.000 0.000 0.000
## x1 0.007 0.036 0.195 0.846 0.007 0.007
## .fw 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.989 0.065 15.126 0.000 0.989 0.305
## .y2 0.942 0.055 17.114 0.000 0.942 0.297
## .y3 1.080 0.058 18.491 0.000 1.080 0.331
## .y4 1.001 0.065 15.438 0.000 1.001 0.305
## .fw 1.264 0.096 13.119 0.000 0.561 0.561
## x1 0.985 0.042 23.406 0.000 0.985 1.000
##
##
## Level 2 [clus]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb =~
## y1 (a) 1.000 0.636 1.004
## y2 (b) 0.994 0.031 32.270 0.000 0.632 0.998
## y3 (c) 0.984 0.036 27.550 0.000 0.626 1.016
## y4 (d) 1.006 0.029 34.896 0.000 0.640 0.982
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.070 0.080 -0.873 0.383 -0.070 -0.110
## .y2 -0.064 0.078 -0.823 0.410 -0.064 -0.101
## .y3 -0.033 0.076 -0.430 0.667 -0.033 -0.053
## .y4 -0.016 0.078 -0.203 0.839 -0.016 -0.024
## fb 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.003 0.017 -0.177 0.860 -0.003 -0.007
## .y2 0.002 0.019 0.094 0.925 0.002 0.005
## .y3 -0.012 0.020 -0.624 0.533 -0.012 -0.033
## .y4 0.015 0.020 0.766 0.444 0.015 0.036
## fb 0.405 0.085 4.751 0.000 1.000 1.000
22.7.2 Model B: Adding a between-only covariate
<- '
model4wCovB level: 1
fw =~ a*y1 + b*y2 + c*y3 + d*y4
level: 2
fb =~ a*y1 + b*y2 + c*y3 + d*y4
fb ~ w
'
<- lavaan::sem(model4wCovB, data = Data,
model4wCovBfit cluster = "clus",
estimator = 'MLR',
fixed.x = FALSE)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov variances are negative
::summary(model4wCovBfit, fit.measures = T, standardized = T) lavaan
## lavaan 0.6-12 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 23
## Number of equality constraints 3
##
## Number of observations 1000
## Number of clusters [clus] 110
##
## Model Test User Model:
## Standard Robust
## Test Statistic 2.509 2.568
## Degrees of freedom 10 10
## P-value (Chi-square) 0.991 0.990
## Scaling correction factor 0.977
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 2638.435 2788.623
## Degrees of freedom 16 16
## P-value 0.000 0.000
## Scaling correction factor 0.946
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000 1.000
## Tucker-Lewis Index (TLI) 1.005 1.004
##
## Robust Comparative Fit Index (CFI) 1.000
## Robust Tucker-Lewis Index (TLI) 1.004
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -7010.919 -7010.919
## Scaling correction factor 0.897
## for the MLR correction
## Loglikelihood unrestricted model (H1) -7009.664 -7009.664
## Scaling correction factor 1.013
## for the MLR correction
##
## Akaike (AIC) 14061.838 14061.838
## Bayesian (BIC) 14159.993 14159.993
## Sample-size adjusted Bayesian (BIC) 14096.472 14096.472
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000 0.000
## 90 Percent confidence interval - lower 0.000 0.000
## 90 Percent confidence interval - upper 0.000 0.000
## P-value RMSEA <= 0.05 1.000 1.000
##
## Robust RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
##
## Standardized Root Mean Square Residual (corr metric):
##
## SRMR (within covariance matrix) 0.002 0.002
## SRMR (between covariance matrix) 0.017 0.017
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
##
## Level 1 [within]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw =~
## y1 (a) 1.000 1.491 0.832
## y2 (b) 0.994 0.031 31.642 0.000 1.482 0.838
## y3 (c) 0.982 0.036 27.079 0.000 1.464 0.815
## y4 (d) 1.002 0.029 34.699 0.000 1.494 0.829
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.000 0.000 0.000
## .y2 0.000 0.000 0.000
## .y3 0.000 0.000 0.000
## .y4 0.000 0.000 0.000
## fw 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.987 0.069 14.241 0.000 0.987 0.308
## .y2 0.929 0.061 15.165 0.000 0.929 0.297
## .y3 1.081 0.057 18.940 0.000 1.081 0.335
## .y4 1.015 0.068 14.894 0.000 1.015 0.313
## fw 2.223 0.159 14.004 0.000 1.000 1.000
##
##
## Level 2 [clus]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb =~
## y1 (a) 1.000 0.687 1.007
## y2 (b) 0.994 0.031 31.642 0.000 0.683 0.994
## y3 (c) 0.982 0.036 27.079 0.000 0.675 1.015
## y4 (d) 1.002 0.029 34.699 0.000 0.688 0.983
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb ~
## w 0.363 0.103 3.533 0.000 0.529 0.477
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.073 0.081 -0.900 0.368 -0.073 -0.107
## .y2 -0.068 0.084 -0.813 0.416 -0.068 -0.099
## .y3 -0.036 0.079 -0.451 0.652 -0.036 -0.054
## .y4 -0.019 0.083 -0.229 0.819 -0.019 -0.027
## w 0.006 0.086 0.070 0.944 0.006 0.007
## .fb 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.007 0.016 -0.415 0.678 -0.007 -0.015
## .y2 0.006 0.019 0.290 0.772 0.006 0.012
## .y3 -0.013 0.020 -0.639 0.523 -0.013 -0.029
## .y4 0.016 0.021 0.778 0.437 0.016 0.033
## .fb 0.364 0.078 4.645 0.000 0.772 0.772
## w 0.815 0.107 7.638 0.000 0.815 1.000
22.7.3 Model C: Adding a covariate at both levels
<- '
model4wCovC level: 1
fw =~ a*y1 + b*y2 + c*y3 + d*y4
fw ~ x1
level: 2
fb =~ a*y1 + b*y2 + c*y3 + d*y4
fb ~ x1
'
<- lavaan::sem(model4wCovC, data = Data,
model4wCovCfit cluster = "clus",
estimator = 'MLR',
fixed.x = FALSE)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov variances are negative
::summary(model4wCovCfit, fit.measures = T, standardized = T) lavaan
## lavaan 0.6-12 ended normally after 83 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 25
## Number of equality constraints 3
##
## Number of observations 1000
## Number of clusters [clus] 110
##
## Model Test User Model:
## Standard Robust
## Test Statistic 2.676 2.757
## Degrees of freedom 13 13
## P-value (Chi-square) 0.999 0.999
## Scaling correction factor 0.971
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 3086.903 3246.984
## Degrees of freedom 20 20
## P-value 0.000 0.000
## Scaling correction factor 0.951
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000 1.000
## Tucker-Lewis Index (TLI) 1.005 1.005
##
## Robust Comparative Fit Index (CFI) 1.000
## Robust Tucker-Lewis Index (TLI) 1.005
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -8052.605 -8052.605
## Scaling correction factor 0.898
## for the MLR correction
## Loglikelihood unrestricted model (H1) -8051.267 -8051.267
## Scaling correction factor 1.002
## for the MLR correction
##
## Akaike (AIC) 16149.210 16149.210
## Bayesian (BIC) 16257.180 16257.180
## Sample-size adjusted Bayesian (BIC) 16187.307 16187.307
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000 0.000
## 90 Percent confidence interval - lower 0.000 0.000
## 90 Percent confidence interval - upper 0.000 0.000
## P-value RMSEA <= 0.05 1.000 1.000
##
## Robust RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
##
## Standardized Root Mean Square Residual (corr metric):
##
## SRMR (within covariance matrix) 0.004 0.004
## SRMR (between covariance matrix) 0.023 0.023
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
##
## Level 1 [within]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw =~
## y1 (a) 1.000 1.489 0.832
## y2 (b) 0.994 0.031 32.214 0.000 1.480 0.836
## y3 (c) 0.984 0.036 27.538 0.000 1.465 0.816
## y4 (d) 1.006 0.029 34.847 0.000 1.499 0.832
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw ~
## x1 0.995 0.052 18.985 0.000 0.668 0.656
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.000 0.000 0.000
## .y2 0.000 0.000 0.000
## .y3 0.000 0.000 0.000
## .y4 0.000 0.000 0.000
## x1 0.000 0.000 0.000
## .fw 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.989 0.065 15.129 0.000 0.989 0.308
## .y2 0.942 0.055 17.105 0.000 0.942 0.301
## .y3 1.080 0.058 18.488 0.000 1.080 0.335
## .y4 1.001 0.065 15.435 0.000 1.001 0.308
## .fw 1.263 0.097 13.085 0.000 0.570 0.570
## x1 0.965 0.044 21.724 0.000 0.965 1.000
##
##
## Level 2 [clus]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb =~
## y1 (a) 1.000 0.686 1.003
## y2 (b) 0.994 0.031 32.214 0.000 0.682 0.998
## y3 (c) 0.984 0.036 27.538 0.000 0.675 1.014
## y4 (d) 1.006 0.029 34.847 0.000 0.690 0.984
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb ~
## x1 2.069 1.515 1.366 0.172 3.017 0.432
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.076 0.087 -0.865 0.387 -0.076 -0.110
## .y2 -0.070 0.084 -0.839 0.402 -0.070 -0.103
## .y3 -0.038 0.082 -0.470 0.638 -0.038 -0.058
## .y4 -0.022 0.084 -0.259 0.795 -0.022 -0.031
## x1 0.005 0.034 0.141 0.888 0.005 0.034
## .fb 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.003 0.017 -0.158 0.875 -0.003 -0.006
## .y2 0.002 0.019 0.089 0.929 0.002 0.004
## .y3 -0.012 0.020 -0.624 0.533 -0.012 -0.028
## .y4 0.015 0.020 0.756 0.450 0.015 0.031
## .fb 0.383 0.101 3.800 0.000 0.813 0.813
## x1 0.021 0.016 1.267 0.205 0.021 1.000
22.8 PART VII: Final Model
<- '
modelFinal level: 1
fw =~ a*y1 + b*y2 + c*y3 + d*y4
fw ~ x1 + x2
level: 2
fb =~ a*y1 + b*y2 + c*y3 + d*y4
fb ~ w
'
<- lavaan::sem(modelFinal, data = Data,
modelFinalfit cluster = "clus",
estimator = 'MLR',
fixed.x = FALSE)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov variances are negative
::summary(modelFinalfit, fit.measures = T, standardized = T) lavaan
## lavaan 0.6-12 ended normally after 48 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 30
## Number of equality constraints 3
##
## Number of observations 1000
## Number of clusters [clus] 110
##
## Model Test User Model:
## Standard Robust
## Test Statistic 3.741 3.913
## Degrees of freedom 16 16
## P-value (Chi-square) 0.999 0.999
## Scaling correction factor 0.956
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 3283.563 3481.228
## Degrees of freedom 24 24
## P-value 0.000 0.000
## Scaling correction factor 0.943
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000 1.000
## Tucker-Lewis Index (TLI) 1.006 1.005
##
## Robust Comparative Fit Index (CFI) 1.000
## Robust Tucker-Lewis Index (TLI) 1.005
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -9527.367 -9527.367
## Scaling correction factor 0.941
## for the MLR correction
## Loglikelihood unrestricted model (H1) -9525.497 -9525.497
## Scaling correction factor 1.012
## for the MLR correction
##
## Akaike (AIC) 19108.735 19108.735
## Bayesian (BIC) 19241.244 19241.244
## Sample-size adjusted Bayesian (BIC) 19155.491 19155.491
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000 0.000
## 90 Percent confidence interval - lower 0.000 0.000
## 90 Percent confidence interval - upper 0.000 0.000
## P-value RMSEA <= 0.05 1.000 1.000
##
## Robust RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
##
## Standardized Root Mean Square Residual (corr metric):
##
## SRMR (within covariance matrix) 0.004 0.004
## SRMR (between covariance matrix) 0.014 0.014
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
##
## Level 1 [within]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw =~
## y1 (a) 1.000 1.498 0.834
## y2 (b) 0.992 0.031 31.996 0.000 1.485 0.837
## y3 (c) 0.982 0.035 27.682 0.000 1.470 0.816
## y4 (d) 1.005 0.029 34.760 0.000 1.505 0.833
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fw ~
## x1 0.980 0.047 20.863 0.000 0.654 0.649
## x2 0.515 0.039 13.113 0.000 0.344 0.347
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## x1 ~~
## x2 0.032 0.033 0.972 0.331 0.032 0.032
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.000 0.000 0.000
## .y2 0.000 0.000 0.000
## .y3 0.000 0.000 0.000
## .y4 0.000 0.000 0.000
## x1 0.007 0.036 0.194 0.846 0.007 0.007
## x2 0.014 0.038 0.372 0.710 0.014 0.014
## .fw 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 0.983 0.063 15.631 0.000 0.983 0.305
## .y2 0.944 0.056 16.896 0.000 0.944 0.300
## .y3 1.084 0.057 18.963 0.000 1.084 0.334
## .y4 1.001 0.064 15.764 0.000 1.001 0.307
## .fw 0.995 0.081 12.358 0.000 0.444 0.444
## x1 0.985 0.042 23.406 0.000 0.985 1.000
## x2 1.017 0.049 20.603 0.000 1.017 1.000
##
##
## Level 2 [clus]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb =~
## y1 (a) 1.000 0.653 1.005
## y2 (b) 0.992 0.031 31.996 0.000 0.647 0.996
## y3 (c) 0.982 0.035 27.682 0.000 0.641 1.017
## y4 (d) 1.005 0.029 34.760 0.000 0.656 0.982
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## fb ~
## w 0.333 0.076 4.389 0.000 0.510 0.461
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.083 0.072 -1.141 0.254 -0.083 -0.127
## .y2 -0.077 0.073 -1.064 0.287 -0.077 -0.119
## .y3 -0.045 0.069 -0.654 0.513 -0.045 -0.072
## .y4 -0.029 0.072 -0.400 0.689 -0.029 -0.043
## w 0.006 0.086 0.070 0.944 0.006 0.007
## .fb 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .y1 -0.004 0.016 -0.246 0.806 -0.004 -0.010
## .y2 0.003 0.019 0.177 0.859 0.003 0.008
## .y3 -0.013 0.020 -0.660 0.509 -0.013 -0.033
## .y4 0.016 0.020 0.778 0.436 0.016 0.036
## .fb 0.336 0.061 5.520 0.000 0.788 0.788
## w 0.815 0.107 7.638 0.000 0.815 1.000